SURFACE FRICTION IN THE ADIABATIC FLOW
OF A COMPRESSIBLE GAS IN TUBES
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From an analysis of the experimental data [1} we have found the relationship between surface
friction and the Mach number,

Below we examine the flow of gas in a tube at a subsonic velocity at the inlet, and with an exhaust
crises. All of the quantities are dimensionless. The limit velocity serves as the velocity scale and the
stagnation temperature represents the temperature scale; for the pressure and density scales we use, re-
pectively, the pressure and density at the initial section. The coefficients of dynamic and turbulent vis-
cosity have beer}vreferred to the dynamic viscosity at the wall. It is further assumed that y =§r0, X = EroRe,
X =x/2r,, and Re is referred to ry/2, to the velocity scale, and to the viscosity scale.

The basic results [1] can be formulated in the following fashion:

a) in practical terms, the pressure is a function only of the longitudinal coordinate x; it diminishes
with increasing speed as it approaches the exhaust, so that dp/dx — —= as x —~xg;

b) the stagnation temperature is kept virtually constant at all points in the flow;

¢) the profile of the longitudinal velocity, with approach to the exhaust, fills out all the more rapidly,
thickening at the center;

d) this profile, with the exception of small areas near the axis and the wall, is rather well approxi-
mated by the exporential relationship u = u;y™, where the exponent n diminishes very rapidly toward the
exhaust, attaining values of the order of 1/15 for Rey = 105;

e) the mean-mass velocity w on approach to the exhaust in-

a2 creases very rapidly, reaching supersonic values at x = Xf.
\\ At our request, the authors of [1] were kind enough to give
%1 us their primary data, which together with certain limit relation-
\ ships characterizing the crises, enabled us to obtain information
\\ as to the nature of the change in the surface friction.
\ It was assumed throughout in {3] that 7, < «, all the way to
96 x = x¢. At the same time, the nature of the variation in the ve-
\ locity profile shows that as x —x¢ we must have Ty— . This is
not a paradoxical result: it is in agreement with the Falkner and
Skan [2] result familiar from the theory of the laminar boundary
layer.
947 % 70 X To prove our statement, we will examine the radius of curva-
Fig.1. Pressure p as a function of the ture for the profile of the longitudinal velocity at the tube wall:
dimensionless length X (the points [ 1+ QB_)ZJW
show the experiment described in [1], fro = 9 /o ] )
and the curve represents the approxi- (_azu )
mation according to (15), @ = 0.35). 9 /o
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Fig.2. Mean mass velocity was a function of the pres-
sure p (the points denote the experiment described in
[1], and the curve represents the approximation accord-
ing to (16)).

For the scale which we have adopted

[ Ou
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To determine (8%u/ 8y?), we will use the equation of motion in the Prandtl approximation, i.e.,
Oou = Ou —dp 1 ()
ust + Repp o = —f 4 — 0D 3
S oy ix T oy 3
where
F=fl
2k

As y -0 we have

dy X
or
(_"l) 28 (4
dy /o dx
In the usual manner, if we assume that
0
T=(pte) o,
dy

then
ot 0%u. oy de ow
(2] s (2] £ 202 ()
\ay)o Vo o Lay  dy/o\dy
Bearing in mind that £, = (9g/9y), = (01 /dy), = 0, we obtain

'32u> ~(EL)
(ayz o \Oylo

*u y ar dp
= 2%k =2, (5
( ay” )o ot dx

and from (4) we will therefore have
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To[ Substituting (2) and (5) into (1), we find
(1 + w)*"* (6)
R
Ty, + 2k ——
4
If we had 74f < «, as x—xf, when dp/dx-’ —oo it is not difficult
from (6) to find that rpy—0.
2 It is physically impossible to demonstrate such behavior of
L/ the longitudinal velocity profile, if we recall the results of the ex-
// periments described in [1]. We must therefore assume that 7
— o a8 X~ Xf.
0 Having carried out the simple transformations, as x —x;
i a7 ¥ _ My from (6) we obtain
Fig.3. Frictional stress 7, = (1) 1 \32
/T()]x:33 at the wall as a function ( 1+ — 2 ) i 2
Of M,. Frg == —+*—:( ) .
* 0 1 o Zp / 2k \ dpjdx ]
X

'C

Hence it follows that as x — xf the quantity T, must approach infinity as (—dp/dx)?, where 8 = 1/3. For
= 1/3 the curvature radius r¢y remains limited, while for g > 1/3 it increases without bound in absolute
magnitude.

Near x = x; we can thus assume that

where 5 = 1/3.

For the upper bound of g, we write the distribution of the tangential stress 7 in the form

= —9lf+F@—n{L—y™, (8)
where
T, +k dp
9 7y’ To—/

This distribution satisfies condition (4) at the wall, as well as the conditions T!y:O =Tg, T| y=1 = 0.

In the limit case of the flow of an incompressible liquid 7, + k(dp/dx) =0 and m = 0, and (8) changes
into an ordinary linear relationship 7 = 7((1 -~ y).

The value of £ can be determined from the equation of motion at the channel axis:

which is found from (3) as r—0.

Let us make the natural assumption that the quantity S‘ 7dy remains limited at any cross section of
the tube. Integrating (8), we find

. dx P

From this equation, on the strength of the boundedness of f, it follows that near x = x¢
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where 8 = 1/2.
In (7) and (9) we thus have

1 1
—<Ph<—. 10
3 3 5 (10)
The quantity 7, can be found from the equation of momentum
dp [+ dw )
To = == —— k G —_ 1, 11
= (Fre g an

1
where w = (1/Q) g ou*(1 — y)dy is the mean mass velocity,

Q

Near x =x¢, from (9) and (11) we have
dp \'B /- dw)
A=|——""2 k+G6G—1, 12
( dx ) ( + dp (12)

from which, on the strength of the boundedness of A and the condition dp/dx— —« as X —Xx¢, bearing in mind
that 8 < 1, we find

G(ﬂ”—) - % (13)
f

Near x = x¢ the pressure p can be presented as
p=ptalX, — X+, (149
where o < 1,
It is not difficult to express « in terms of 8, expanding the indeterminacy in (12) as x —x¢.

In (12), bringing x to xf, on the basis of the 1'Hdpital rule, we find

Frgde ()
A dp G dw \ dx
= —
(_E_PL)‘ " l—pdp  _ dp
dx dx*

Assuming that (d°w/dp?); # 0, from this relationship and from (14) we find that
1

a4 = ———

2 —

|
TR T

whence, with (10), we find that

N
I\

1 o<
3 = ~» 5 .
If we assume that (dzw/dp"’)f =0, for the determination of A we need further expansion of the indeter-
minacy. If (d%/dp®)¢ = 0, we have @ = (2 —B)/(3 — B), or with consideration of (10),
0.6 < a < 0.625.
Processing the experimental data from {1}, we became convinced that « < 0.6,

We must therefore have 1/3 = o = 2/5 and (d*w/dp?); = 0. As the approximation relationship for p(X)
near the exhaust we can take

P =p; +a(X; — X)* +b(X; — X", (15)

where v > o.
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Figure 1 shows the function p(X) for the "B" experiment in [1]. Here we have o = 0,35, v = 0.99808,
a =0.09619, and b = 0.00147.

As we can see, approximation (15) shows good agreement with the experiment in a rather large re-
gion of X values before the exhaust. From (15) it is now easy to determine the derivative dp/dx.

To calculate 7, from (11) we also have to know the derivative dw/dp. Considering (13), we approxi-
mate the mean mass velocity w in a rather small area around the exhaust with the expression

@ = wp — - (p— p5) + 4y (p — pp)". (16)

Here wg is determined from the experimental values for ng = 1/15.4, for the flow rate, and for pg- We find
the magnitude of g, by using the method of least squares for the values of w found from the experimental
data in [1]. It proved to be equal to 0.4140.

Figure 2 shows the approximation curve (16) and the experimental values of w. The agreement is
quite good,

Figure 3 shows Ty = TO/TOI X=33, calculated on the basis of (11), (15), and (16), as a function of the
Mach number My, determined from the one-dimensional model, i.e., from the equation
p—2 _—q. (17)

2
I —w,

The processing of the experiments described in [1] with consideration of the limit relationships thus
leads to the conclusion that the surface friction 7, increases with an increase in M,.

These results are in qualitative agreement with the experiment designed to measure surface friction
directly at the wall of a tube [4].

NOTATION

is the longitudinal coordinate;

is the transverse coordinate;

is the tube radius;

is the longitudinal velocity component;
is the transverse velocity component;
is the pressure;

is the density;

is the dynamic viscosity;

is the coefficient of turbulent viscosity;
is the isentropic exponent;

is the mass flow rate;

is the mean mass velocity;

is the Mach number;

is the Reynolds number;

is the tangential stress.

THE2EQFTOEDT S E 89K

Symbols

denotes the wall of the tube;
denotes the tube axis;
denotes the final section of the channel;
33 is the cross section where the boundary layer fills the entire cross section of the tube [i];
is a quantity determined from the stagnation temperature;
denotes a quantity determined on the basis of (17).

* © M ™= o
i
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